
J2EE based Web-Interface Development Framework

for Clinical Imaging Databases

I. Burak Ozyurt

November 20, 2003

Contents

1 Overall Architecture 3

2 Presentation Layer 5
2.1 Struts Overview . 5
2.2 Struts Controller and Form Validation Interactions 5
2.3 Struts Application Initialization . 6

3 Session Facade Layer 9
3.1 Data Maintenance Example - Subject/Visit Management 9

4 Data Access Layer 14
4.1 Object-to-Relational Mapping . 14

4.1.1 Data Access Objects . 14
4.2 Code Generation . 15

5 Assessment Query Builder 16

6 SRB-Database interaction 18

A Getting and Building J2EE based web interface for local clinical imaging databases 23
A.1 Prerequisites . 23
A.2 Getting the code . 23
A.3 Preparation for build . 23
A.4 Build and Deploy . 24
A.5 Running web user interface . 24

B Struts configuration file 25

C Simple O/R Mapping Tool Help 30
C.1 Main Screen . 30
C.2 Schema Extraction . 30
C.3 Custom Code in Generated Java Code and Code Regeneration 33

D Database Security 34
D.1 Virtual Private Database . 34
D.2 Oracle Label Security . 34

1

List of Figures

1.1 High level architecture of UCSD Human Imaging Database User Interface 3
1.2 High level class diagram for server side service framework 4

2.1 User-Struts-Application Interactions for web-tier side form validation and action pro-
cessing . 6

2.2 Struts actions for UCSD web interface . 7
2.3 Servlet container-Struts initialization sequence diagram 8

3.1 Class Diagram for Session Facade Layer interfaces and their implementations 10
3.2 Selecting a score Struts action sequence diagram . 11
3.3 Get matching subjects sequence diagram . 12
3.4 Adding a visit for a subject sequence diagram . 13

5.1 High level sequence diagram for assessment query building use case 17

6.1 SRB-JARGON based image data retrieval and on-the-fly image conversion sequence
diagram . 19

6.2 SRB Scommand based image series download and AFNI conversion sequence diagram 19
6.3 Clinical Assessment Selection Screen . 20
6.4 Assessment score Selection Screen . 20
6.5 Assessment Query Criteria selection . 21
6.6 Assessment score Selection Screen . 21
6.7 Subject Visit Info Screen . 22

C.1 Database connection parameters dialog . 31
C.2 Database connection parameters dialog . 31
C.3 Code Generator user interface look after code generation 32

2

Chapter 1

Overall Architecture

The UCSD morphometric human imaging database user interface is a three tier J2EE (Java 2
Platform Enterprise Edition) application. The overall architecture is shown in Figure 1.1. It has
a (thin) client tier, a middle tier (servlet/JSP based) using Jakarta Struts web framework [Cav02]
and an enterprise information source (EIS) tier. The client tier consists of a web browser. The EIS
tier is the Oracle database instance and the collection of stored procedures/functions and packages
for low level data access functions and optimizing hot spot queries.

The middle tier currently consists of a web tier tier only. For large applications a server com-
ponent framework like enterprise Java Beans (EJB) provides scalability, however foreseeable scope
does not justify an EJB container.

The underlying web application framework used for user interface is Jakarta Struts [Cav02]
which is a Model 2 architecture based on model-view-controller (MVC) design pattern [GHJV94].
Struts uses a controller servlet (see front controller design pattern [ACM01] and command design
pattern [GHJV94]) to intercept a web request and determine what to display next. It also provides
tag libraries for JSPs, validation, internationalization and error handling support.

Figure 1.1: High level architecture of UCSD Human Imaging Database User Interface.

The MVC design pattern allows decoupling of presentation logic from the business logic. Here,
the business logic is defined as the code manipulating business data (e.g. clinical assessments)
relevant to the application. The presentation logic is the code preparing the data provided by

3

the business logic for display to the user of the application. The decoupling provides flexibility
in presentation layer selection and development responsibility separation. In the UCSD human
imaging database, the business logic is further decoupled by the use of code-generated data access
objects (DAO) [ACM01]. The DAOs can be seen as an object-relational mapping, since they map
database tables to objects. They provide a data access layer, which is not directly accessed by
the presentation layer to reduce inter-layer dependency. The DAOs provide CRUD (create, read
update and delete) operations on database table level and are fine grained. The presentation
layer communicates with the data access layer through session facades [ACM01], which coordinate
operations between multiple DAOs in a workflow and provide a coarse grained simpler interface
hiding the internals of the business logic from the presentation layer. The data transfer between
presentation and data access layer is via coarse grained transfer objects (value objects) [ACM01].
The business logic layer also serves data import/export and conditioning clients which map subject
data to the Oracle tables by doing necessary data cleaning, combining and transformation, which
are not part of web user interface. Currently clinical assessment and visit data upload is supported.

Besides the business logic, application level authentication, authorization and database connec-
tion pooling services are needed. In order to be able to easily replace these services with different
mechanisms, the abstract factory design pattern [GHJV94] is used. In Figure 1.2, the high level
class diagram for the server side service framework for UCSD human imaging database in unified
modeling language (UML) format [BRJ97] is shown. Here the ServiceFactory class creates the
classes implementing the security and database connection pooling interfaces. However it returns
only the interface to the service requesting client. The interfaces are the only means by which
the layers communicate with each other. Even when the implementation of the interfaces change
drastically over time, if the interfaces remain same, the layers can talk with each other. To support
label security, a non-traditional connection pool is developed allowing named user support.

Figure 1.2: High level class diagram for server side service framework.

4

Chapter 2

Presentation Layer

2.1 Struts Overview

Struts is a presentation framework for building web application using Java Servlets and JSPs.
Struts uses the JSP Model 2 architecture which is based upon Model-View-Controller (MVC) design
pattern (also known as Observer) [GHJV94]. In the model 2 architecture, the client request is first
intercepted by a controller servlet which handles the initial processing of the request and determines
which JSP page to display next.

2.2 Struts Controller and Form Validation Interactions

In Struts there is one controller servlet ActionServlet, which acts like a command dispatcher.
ActionServlet delegates the request processing to the corresponding command, an Action class
which is extendended from org.apache.struts.action.Action which has an execute() method
that needs to be implemented to process the user request and depending on the outcome of the
user request processing, needs to determine the next action. The ActionServlet determines which
action to pick, by reading it from a XML-based configuration file (struts-config.xml). The
Struts config file used for UCSD Morph BIRN web interface is shown in Appendix B). The actions
are declared in the <action-mappings> section of the struts-config.xml file. Struts passes the
submitted HTML form parameters to the execute() method via an ActionForm which it populates
from the received HTTP request. Below is an action declaration from struts-config.xml file.

<action path="/selectscores"
type="clinical.web.actions.SelectScoresAction"
name="asSelectForm"
scope="session"
input="/pages/SelScore_full.jsp">

<forward name="success" path="/pages/SelectDerived_full.jsp" />
</action>

Here path is the name of the action, type is the fully qualified Java class name for the class that
extends org.apache.struts.action.Action. The attribute name is the name of the form bean
associated with this action. The form beans extend org.apache.struts.action.ActionForm and
are declared in the <form-beans> section of the struts-config.xml. The attribute scope is used
to identify the scope in which the form bean is placed. It can be request or session. The attribute
input is the application-relative path to the input form to which control should be returned if a
validation error is encountered. The forward elements are used to declare the possible next pages

5

Figure 2.1: User-Struts-Application Interactions for web-tier side form validation and action pro-
cessing.

this action will return to the user. Here name is a unique identifier used to reference this forward
in the application. In the execute() of the Struts action, this name is used to select and return
the ActionForward class. The path attribute is an application relative URI to which the control
should be forwarded or redirected.

The org.apache.struts.action.ActionForm provides form data validation support using Tem-
plate Method Design pattern [GHJV94]. A class extending the ActionForm can provide implemen-
tation of validate() method which can check the fields to be set by the user. If any requires data
is missing or the user has entered incorrect data, the validate() method returns an ActionErrors
class containing validation errors, which results in forwarding back to the same input form with
validation errors shown, so that the user can correct them and resubmit the HTML form. Only
after all validation errors are corrected, the execute() method on the corresponding Action class
is called. (See Figure 2.1).

The currently available Struts actions for UCSD Morph-BIRN web interface is shown in Fig-
ure 2.2.

2.3 Struts Application Initialization

Struts allows application plugins for application life cycle management support. In Figure 2.3,
the initialization of the application is shown. Here the ServicesPlugin class implements the

6

Figure 2.2: Struts actions for UCSD web interface.

7

Figure 2.3: Servlet container-Struts initialization sequence diagram.

org.apache.struts.action.Plugin interface. During ServletContainer initialization (here Apache
Tomcat), Struts ActionServlet init() method is called, which in turn initializes on the ap-
plication plugins. The ServicesPlugin.init() method, gets the SimpleSecurityService and
DBPoolService singletons, which actually creates them. A singleton ensures that there is only
single instance of that class can be instantiated and provides global point of access [GHJV94].
DBPoolService.startup() initializes the database connection pool using the SimpleSecurityService
to get the named database users. SimpleSecurityService.prepareTableCache() caches the ta-
bles and views available to the admin user, which is used to select the allowed view of the database ta-
ble in case one or columns contain sensitive material for the user. QueryProcessor.prepareTableInfoCache()
method caches table column names used for SQL column name to value object property name match-
ing. Last, FileCacheCleanupService singleton is initialized and cache cleanup thread is started,
which periodically checks the local image series cache using least recently used (LRU) cache eviction
scheme.

8

Chapter 3

Session Facade Layer

Session Facade is a J2EE design pattern based on Facade design pattern [GHJV94] which defines a
higher-level interface that makes the subsystem easier to use. The goal is to provide a coarse grained,
simple interface to the presentation code, to ensure separation of business logic from the presentation
logic and prevent tight coupling of presentation layer with business logic which is a common problem
with many web application development methods based on procedural scripting languages. The
loose coupling of presentation layer from the business logic facilitates paralell development, allows
the server-side to serve different kind of clients without any change. In UCSD Morph BIRN web
interface, the business logic is accessed through well-defined interfaces which are the access points for
the presentation layer to the session facade layer. The implementation of the interfaces can change
over time and can vary drastically from the previous implementations. Since the interface provide a
contract between presentation layer and the session facade layer, if the new implementation does not
break the contract the presentation layer will work with new implementation without any change.
In Figure 3.1, the class diagram for Session Facade Layer interfaces and their implementations
are shown for the UCSD Morph BIRN web interface. The implementations directly access data
access layer and coordinate between multiple data access objects, query building logic and auxiliary
services like database connection pooling, security (authorization).

In Figure 3.2, the sequence diagram for assessment score selection portion of the assessment
query wizard is shown. Here the Struts framework is shown as the initiator, which is triggered by
a user clicking Continue button on the Assessment Score Selection Form. Struts finds the corre-
sponding action for the request from its ActionMapping table and invokes the method execute()
on it. In execute(), the Struts populated AssessmentQueryForm is retrieved from the user’s
session and the selected scores are recorded. Then, using ServiceFactory, the session facade in-
terface for the derived data processing is retrieved (IDerivedDataService). On the interface,
getAllSubcorticalVariables() is called, which internally calls data access layer to retrieve de-
rived data variable information from the database. If successful, the execute() method returns
the forward information for the following page.

3.1 Data Maintenance Example - Subject/Visit Management

For the prospective studies, clinical data needs to br input to the database by means of a user
interface, preferably a low maintenance thin client like a web browser. Data maintenance involves
data creation, update and deletion, by multiple (possibly) concurrent users where the ensuring of
the data integrity can be challenging.

In Figures 3.3 and 3.4, two sequence diagrams are given to show the session facade and lower
level classes providing data maintenance support mainlt subject/visit maintenance. A subject

9

Figure 3.1: Class Diagram for Session Facade Layer interfaces and their implementations.

10

Figure 3.2: Selecting a score Struts action sequence diagram.

11

Figure 3.3: Get matching subjects sequence diagram.

has zero or more visits. Each visit can have one or more segments. In Figure 3.3, A user sends
getMatchingSubjects message to the client (here session facade) passing a SearchCriteria object
containing a SearchPredicateList object which contains zero or more SearchPredicate objects.
The client creates a QueryProcessor object, which is a generic SQL query builder and processor
for single table queries. It relies on the one-to-one relationship between a value object and its
corresponding table. QueryProcessor requires a search predicate list and the class type of the value
object for which a query will be build and sent to the database server. Then it calls buildQuery()
on QueryProcessor to build the necessary dynamic query iterating thru the SearchPredicateList.
Then doQuery() is called to send the query to the database and return the result set converted to
value objects. QueryProcessor is mainly used to build more complex queries than the Data Access
Object find() method provides.

Once a subject is selected, a new visit can be added as shown in Figure 3.4. When the client
receives addVisitForSubject signal, it gets from ServiceFactory the ISubjectVisitManagement
interface which is the session facade for subject/visit data maintenance. It creates and populates
a Visit value object and a VisitSegment value object and adds it to the Visit object. Then, it
calls ISubjectVisitManagement.addVisitForSubject, which internally gets a database connec-
tion from the connection pool for the serviced user, creates an Expcomponent value object and pop-
ulates it from the Visit object. It sets Expcomponent uniqueID using the SequenceHelper object,
creates a ExpcomponentDAO object and calls ExpcomponentDAO.insert(). After that, it iterates
through the segments and adds them to the database by calling internal handleAddVisitSegment()
method. Then it commits the transaction and releases the connection back to the connection pool.

12

Figure 3.4: Adding a visit for a subject sequence diagram.

13

Chapter 4

Data Access Layer

4.1 Object-to-Relational Mapping

While relational database constructs seem similar to object-oriented contstructs, on the surface,
there are many important differences between them which make transitioning from the relational
word to the object world challenging. Especially proper mapping of associations and inheritance is
difficult. There are many commercial and open source O/R Mapping tools available, each of which
comes with its own prerequistes, limitations.

For maximum flexibility and minimum performance impact, UCSD Morph BIRN Web Interface
uses a simple one-to-one mapping (each table is mapped to a class) with code generated Data Access
Objects which are mainly used for data manipulation and complex queries with large result sets
are handled through direct SQL and stored procedures for efficiency.

4.1.1 Data Access Objects

Data access objects abstract and encapsulate the access to the data source and provide a uniform
interface to the upstream layers, which facilitates the portability of the application. A data access
object acts like an adapter bwtween data source (e.g. database, directory service, XML files etc.)
and the component using the data source. For UCSD Morph BIRN Web Interface, the data source
is an Oracle database and its communication language is SQL. Here, the DAO hides the SQL calls
from the DAO client and provides an object oriented, uniform interface. Since SQL data types and
Java data types are different, the DAOs need to do the necessary type conversions between SQL
and Java data types.

A typical DAO, provides the following interface to its clients

public void insert(Connection con, <Value Object> bean)
public List find(Connection con, <Value Object> criteria)
public void update(Connection con, <Value Object> bean,

<Value Object> criteria)
public void delete(Connection con, <Value Object> criteria)

Thus, each DAO provides CRUD (Create/Read/Update/Delete) operations for its corresponding
schema object (table or view). A value object is a Java bean used by the corresponding DAO and
different software layers to transfer coarse grained data between layers. There is one value object
class for each schema object where the properties match the columns of the schema object. The
insert() method takes a value object and a database connection as input, and creates an SQL
INSERT statement using the property values in the value object and inserts it into the database.

14

Please note that insert(), update() and delete() methods do not commit their changes to the
database to allow maximum user control for transaction demarcation.

The find() method takes a value object as search criteria and a database connection as input.
It uses the user set properties on the value object to create the WHERE clause of the SELECT
statement. Because of the structure of the value object the predicates in the where caluse can be
only equalities. To retrieve all the rows in the corresponding table pass an empty value object as
criteria to insert(). The retrieved database table rows are converted to a corresponding value
object and returned as a list.

The update() method takes a value object as the data to be updated, an another value object
as search criteria and a database connection. It creates an INSERT statement and does the necessary
database update.

The delete() method takes a value object as search criteria to find the rows to be deleted
and a database connection. It generates the corresponding SQL DELETE statement and deletes the
corresponding rows from the database.

4.2 Code Generation

Usually most of the code of an database application is dedicated to data source access and manipu-
lation, which has an inherent structure suitable, after generalization, to code generation. The code
generation increases productivity and decreases maintenance cost for adjusting the application code
to the database schema changes, since after a schema change, the data access layer can regenerated.
A GUI tool is provided (See Appendix C), to generate DAOs, value objects and EJB primary keys
from the database schema. The tool does not override custom code in the generated source code
given that the code is put inside the specified delimiters.

15

Chapter 5

Assessment Query Builder

The UCSD human imaging database web application provides a query builder wizard for clinical
assessment queries. Figure 5.1 shows a high level UML sequence diagram illustrating the steps
involved in the building and execution of a clinical assessment query. The first step is entering
the search criteria. Through a set of sequential web pages, the user selects the assessments and
the scores of interest, and then the system shows the list of possible search parameters based
on these selections. The user enters his/her search criteria and presses the query button. The
Struts controller servlet intercepts the requests and selects the AsQueryAction object to process
the request and calls the method execute() on it. AsQueryAction interacts with the business
logic layer via the ServiceFactory to get the assessment business service IAssessmentService.
It creates a logical operator tree (an intermediate representation for the final SQL query) and
passes its root to the method queryForScores() in IAssessmentService, which, in turn, creates
an AssessmentQueryBuilder object to build the SQL query to be sent to the database. Here the
visitor design pattern [GHJV94] is used. The AssessmentQueryBuilder visit() method recursively
visits every node in the logical operator tree and builds the inner and outer SQL queries, which
are combined and sent to the database. The results are returned to the AsQueryAction which in
turn passes the query results to the query result page for rendering. The user can navigate through
the search results or export the results in CSV format to be used with SPSS or other statistical
packages for statistical analysis.

16

Figure 5.1: High level sequence diagram for assessment query building use case.

17

Chapter 6

SRB-Database interaction

The user can drill-down into the visit and imaging information of a specific subject from the search
query results. Besides subject visit information, there is also image preview and retrieval form
SRB (See Figure 1.1). The SRB URIs are retrieved from the Oracle database and an individual
slice of DICOM image is retrieved via Jargon (SRB Java API) and converted to jpeg. The whole
image series is retrieved using bulk unload Scommand for efficiency reasons. To increase response
time under heavy load, a least recently used (LRU) file cache is used in the middle tier server. To
assure proper concurrent operation, during image series retrieval from SRB and DICOM to AFNI
conversion, exclusive file locks are used. To avoid race conditions during data streaming and cache
cleanup, a read lock mechanism is simulated with file locks. There is a cache cleanup thread in the
middle tier that wakes up periodically and checks the cache for size and age and cleans up the least
recently accessed image series. A cache hit is an order of magnitude faster than a new request. A
new request can take up-to 40 seconds to process, including DICOM to AFNI conversion and data
streaming to the client.

The image conversion object interactions are shown in Figure 6.1. The object interactions for
the image series retrieval and DICOM to AFNI format conversion is shown in Figure 6.2.

Screen shots for a typical usage scenario of the web interface are shown in Figures 6.3,6.4,6.5,6.6,6.7.

18

Figure 6.1: SRB-JARGON based image data retrieval and on-the-fly image conversion sequence
diagram.

Figure 6.2: SRB Scommand based image series download and AFNI conversion sequence diagram.

19

Figure 6.3: Clinical Assessment Selection Screen.

Figure 6.4: Assessment score Selection Screen.

20

Figure 6.5: Assessment Query Criteria selection.

Figure 6.6: Assessment score Selection Screen.

21

Figure 6.7: Subject Visit Info Screen.

22

Appendix A

Getting and Building J2EE based
web interface for local clinical
imaging databases

A.1 Prerequisites

• Java SDK 1.3 or higher

• Apache Ant for build (http://ant.apache.org/)

• Jakarta Tomcat servlet/JSP container (http://jakarta.apache.org/tomcat/)

• DCMTK for DICOM header reading/editing

• AFNI and SRB Scommands if you want DICOM to AFNI conversion part

A.2 Getting the code

You can get the code from the BIRN CVS server, if you have BIRN CVS account by typing;

cvs checkout clinical

A.3 Preparation for build

Assuming the full path to the directory you have checked out UCSD Morph Human Imaging
Database Web Interface and web application framework as $CLINICAL HOME

• Copy $CLINICAL HOME/build.properties.template to $CLINICAL HOME/build.properties
and edit using for Tomcat installation directory information

• Copy $CLINICAL HOME/conf/users.xml.example to $CLINICAL HOME/conf/users.xml and
create database user - web user mappings accordingly.

• Copy $CLINICAL HOME/conf/clinical.properties.example to
$CLINICAL HOME/conf/clinical.properties and modify according to your system configura-
tion

23

• Copy $CLINICAL HOME/conf/log4j.properties.example to
$CLINICAL HOME/conf/log4j.properties to setup rotating logging file(s) location.

• In $CLINICAL HOME/web/WEB-INF/struts-config.xml file, edit the entry

<set-property property="db_url"
value="jdbc:oracle:thin:@fmri-gpop:1521:orcl1"/>

section according to your database host, port and database name.

The entry is in the plug-in section of the Struts configuration file

<plug-in className="clinical.web.ServicesPlugin">

<set-property property="driver_class"
value="oracle.jdbc.driver.OracleDriver"/>

<!-- for mbirn -->

<set-property property="user_info_file"
value="/WEB-INF/users.xml"/>

<set-property property="db_url"
value="jdbc:oracle:thin:@fmri-gpop:1521:orcl1"/>

A.4 Build and Deploy

In $CLINICAL HOME, run

$ ant

A.5 Running web user interface

• Start Tomcat

$ \$TOMCAT_HOME/bin/startup.sh

item Stop Tomcat

$ \$TOMCAT_HOME/bin/shutdown.sh

24

Appendix B

Struts configuration file

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE struts-config PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 1.1//EN"
"http://jakarta.apache.org/struts/dtds/struts-config_1_1.dtd">

<struts-config>

<form-beans>
<form-bean name="asSelectForm"

type="clinical.web.forms.AsQueryBuilderForm" scope="session"/>

<form-bean name="logonForm"
type="clinical.web.forms.LogonForm" scope="request"/>

<form-bean name="subVisitForm"
type="clinical.web.forms.SubjectVisitForm" scope="request"/>

<form-bean name="svmForm"
type="clinical.web.forms.SubjectVisitManagementForm"
scope="session"/>

</form-beans>

<global-exceptions>

</global-exceptions>

<global-forwards>

<!-- Default forward to "Welcome" action -->
<!-- Demonstrates using index.jsp to forward -->

<forward name="welcome" path="/Welcome.do"/>
<!-- IBO -->
<forward name="logout" path="/logout.do"/>
<forward name="querywizard" path="/querywizard.do"/>

25

<forward name="asquery" path="/asquery.do"/>
<forward name="logon" path="/logon.do"/>
<forward name="login" path="/pages/logon_full.jsp"/>

<forward name="as_sel" path="/pages/SelAs.jsp"/>

</global-forwards>

<action-mappings>

<action path="/logon"
type="clinical.web.actions.LogonAction"
name="logonForm"
scope="request"
input="logon">

<forward name="success" path="/pages/AfterLogin_full.jsp" />
<forward name="failure" path="/pages/logon_full.jsp" />
</action>

<action path="/asquery"
type="clinical.web.actions.SelectAssessmentAction"
name="asSelectForm"
scope="session"
input="/pages/SelAs_full.jsp">

<forward name="success" path="/pages/SelScore_full.jsp" />
</action>

<action path="/querywizard"
name="asSelectForm"
scope="session"
input="/pages/SelAs_full.jsp"
parameter="/pages/SelAs_full.jsp"
type="org.apache.struts.actions.ForwardAction"/>

<action path="/selectscores"
type="clinical.web.actions.SelectScoresAction"
name="asSelectForm"
scope="session"
input="/pages/SelScore_full.jsp">

<forward name="success" path="/pages/SelectDerived_full.jsp" />
</action>

<action path="/selectderived"
type="clinical.web.actions.SelectSubcorticalsAction"
name="asSelectForm"
scope="session"
input="/pages/SelectDerived_full.jsp">

<forward name="success" path="/pages/CollectQuery_full.jsp" />
</action>

<action path="/collectquery"

26

type="clinical.web.actions.AsQueryAction"
name="asSelectForm"
scope="session"
input="/pages/CollectQuery_full.jsp">
<forward name="success" path="/pages/SVResults_full.jsp" />
</action>

<action path="/svresults"
type="clinical.web.actions.SVNavigateAction"
name="asSelectForm"
parameter="action"
scope="session"

input="/pages/SVResults_full.jsp">
<forward name="success" path="/pages/SVResults_full.jsp" />

</action>

<action path="/subvisit"
type="clinical.web.actions.SubjectVisitAction"
name="subVisitForm"
scope="session"
input="/pages/SubjectVisit_full.jsp"
>
<forward name="success" path="/pages/SubjectVisit_full.jsp" />

</action>

<action path="/downloadafni"
type="clinical.web.actions.MRIDownloadAction"
name="subVisitForm"
scope="session"
input="/pages/conv_status_full.jsp" >

<forward name="success" path="/pages/conv_status_full.jsp" />
</action>

<action path="/viewqueryres"
name="asSelectForm"
scope="session"
parameter="/pages/SVResults_full.jsp"
type="org.apache.struts.actions.ForwardAction"/>

<action path="/convertafni"
name="subVisitForm"
scope="session"
type="clinical.web.actions.ConversionProgressAction">

<forward name="success" path="/pages/conv_status_full.jsp" />
</action>

<action path="/findsubjects"
name="svmForm"
scope="session"
type="clinical.web.actions.SubjectQueryAction">

27

<forward name="success" path="/pages/SubjectList_full.jsp" />
</action>

<action path="/navsubjects"
type="clinical.web.actions.SubjectSRNavigateAction"
name="svmForm"
parameter="action"
scope="session"
input="/pages/SubjectList_full.jsp">

<forward name="success" path="/pages/SubjectList_full.jsp" />
<forward name="edit_subject" path="/pages/SubjectDetail_full.jsp" />
</action>

<action path="/editsubject"
type="clinical.web.actions.SubjectManagementAction"
name="svmForm"
parameter="action"
scope="session"
input="/pages/SubjectDetail_full.jsp">

<forward name="success" path="/pages/SubjectDetail_full.jsp" />
<forward name="edit_visit" path="/pages/SubjectDetail_full.jsp" />
</action>

<action path="/logout"
type="clinical.web.actions.LogoutAction">
<forward name="success" path="/index.jsp" />

</action>

</action-mappings>

<controller
processorClass="org.apache.struts.tiles.TilesRequestProcessor"/>

<message-resources parameter="resources.application"/>

<plug-in className="org.apache.struts.tiles.TilesPlugin" >
<set-property property="definitions-config"

value="/WEB-INF/tiles-defs.xml" />
<set-property property="moduleAware" value="true" />
<set-property property="definitions-parser-validate" value="true" />

</plug-in>

<plug-in className="org.apache.struts.validator.ValidatorPlugIn">
<set-property
property="pathnames"
value="/WEB-INF/validator-rules.xml,/WEB-INF/validation.xml"/>

</plug-in>

<plug-in className="clinical.web.ServicesPlugin">
<set-property property="driver_class"

value="oracle.jdbc.driver.OracleDriver"/>

28

<set-property property="user_info_file"
value="/WEB-INF/users.xml"/>

<set-property property="db_url"
value="jdbc:oracle:thin:@fmri-gpop:1521:orcl1"/>

<set-property property="mri_jpegs_dir"
value="/mri_images" />

<set-property property="cache_root"
value="/WEB-INF/cache"/>

</plug-in>

</struts-config>

29

Appendix C

Simple O/R Mapping Tool Help

C.1 Main Screen

After running codegen.sh, you should see the main screen. Here you will see a tree pane for the
schema objects (tables and views) for the Oracle database to which you will connect to extract
schema information and generate Java code for a simple one-to-one object relational mapping. On
the right pane titled Code Generation you have fields which are prepopulated and default code type
to generate as dao (Data Access Object).

Currently three types of Java classes can be generated

• Data Access Object (dao) - These objects form the data access layer and they are responsi-
ble for CRUD (create, read update and delete) operations on their corresponding table. Each
DAO has a find method to which you can pass a value object (vo) with some properties set us-
ing setter methods and it will internally create the corresponding SQL and return the results
as a list of populated value objects. Each DAO also has an insert(), delete() and update()
method.

• Value Object (vo) - A value object is a Java bean used by the corresponding DAO and
different software layers to transfer coarse grained data between layers. Code generator gen-
erates a value bean for each selected schema object where the properties match the columns
of the schema object.

• Primary Key Object (pk) - Currently not used. A primary key object maps to the primary
key of its corresponding schema object.

C.2 Schema Extraction

The first step in code generation is schema extraction from an Oracle database. First, select Load
Schema Objects from File Menu. The following dialog box will appear. Initially the fields in the
dialog box will be empty. However, the code generator saves the last setting after each run.

Here you need to provide database host, port, name and user/schema information for the schema
where your database tables /views reside. Then, press OK. After successful schema extraction, the
Generate and Select All buttons in the Code Generation panel will be enabled. And you will see
the tree and schema object list box populated. Now you can select the schema objects from the
list, adjust the parameters like code type and output directory and press Generate button. Here,
two data access objects are generated for NC USERCLASS and NC EXPSEGMENT schema objects and
saved to /tmp/clinical/server/dao directory. The Package Name is the name of the package

30

Figure C.1: Database connection parameters dialog.

Figure C.2: Database connection parameters dialog.

31

Figure C.3: Code Generator user interface look after code generation.

32

for the data access objects. Since data access objects depend both on code generated (like value
objects) and programmer written Java code residing in clinical.exception and clinical.server.utils
packages, if you want to use a different package structure, you need to move the dependencies in
clinical.exception and clinical.server.utils packages to your package structure and set the Package
Name, Value Object Package Name, Exception Package Name and Utilities Package Name fields
accordingly.

C.3 Custom Code in Generated Java Code and Code Re-
generation

During development, there may be cases where you need to customize some of the generated code.
If you don’t want your custom code to disappear after code regeneration, you should put your
custom code within delimeters like shown below.

/*+++ */
// Enter your code here
String myVar;
public String getMyVar() { return this.myVar; }

/*+++ */

33

Appendix D

Database Security

Sharing of biomedical human subject data is highly sensitive and the security requirements are much
higher than those for most other database applications. The HIPPA confidentiality requirements
must be met. Another complicating factor is having shared and private data within the same
database. Separating private and shared data into two different databases solves this problem,
however it creates increased maintenance and development costs. Hence, for the UCSD human
imaging database, the first approach is used.

Even though security can be handled in application levels, pushing it to the database layer cen-
tralizes the security and decouples it from the client applications, which allows uniform enforcement
of security rules.

Having both private and shared data together in the same database means that both private
and public data must reside in the same database tables, which requires a row level security on the
database side.

D.1 Virtual Private Database

Oracle provides row level security via a mechanism called Virtual Private Databases (VPD). With
VPD you establish policies in the form of predicates (where clauses) that are attached to every
query that the user presents to the database. Using VPD, a security structure must only be built
once in the database server. Since the security policies are attached to the data instead of the
application(s) using the data, security rules are enforced at all times and from any access approach.
The SQL query to access the data is the same regardless of the client; the filtering predicates are
applied during query processing by the Oracle database server transparently. VPD works under the
assumption that a client will connect via a named user connection. Traditional connection pooling
is not supported, since connections will not have any identity in that case.

D.2 Oracle Label Security

Oracle label security [LM02] is a collection of procedures and constraints built on top of VPD to
enforce row level security. Each table which needs row level security is augmented by a (hidden)
column which contains a security label for each row. The labels designate which user have access
to what types of data. The collection of security rules and access requirements is called a security
policy. The security labels are always associated with a security policy. A fine granular security
is provided via levels, optional compartments and groups. A level is a ranking that denotes the
sensitivity of the information it labels. A compartment refines the access to the information within

34

a label. A group refines a compartment and allows representation of a hierarchy of users. A security
label has the following format

level : compartment 1,..., compartment n : group 1, ... , group n

Each named database user is assigned user labels to set his/her maximum read and write labels,
minimum write labels, default and row levels.

To illustrate label security, assume there are two levels (public, private), then two compart-
ments (lab1, lab2) are defined. Also assume that there is a hierarchy of groups within each com-
partment, namely group1 and its two subgroups group2 and group3. Let consider a possible label
public:lab1:group2. Any row which has this label in a protected table can be seen (given sufficient
user label privileges) by a user working for lab1 and being a member of group2 or group1. Since
group1 is higher in hierarchy, any user in group1 can access data from lower hierarchies.

In the UCSD human imaging database, currently, two levels (PUBLIC and PRIVATE) and two
compartments (LOCI, BIRN) are defined. Currently, 13 tables for assessment and subject visit
data are under label security control. In some tables where there are some sensitive columns mixed
with less sensitive columns, even row level security is not enough fine granularity. In those cases a
view is created on top of the protected tables and exposed to the less privileged named database
users instead of the full table.

35

Bibliography

[ACM01] Deepak Alur, John Crupi, and Dan Marks. Core J2EE Patterns: Best Practices and
Design Strategies. Prentice Hall, 2001.

[BRJ97] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modelling Language
User Guide. Addison Wesley, 1997.

[Cav02] Chuck Cavaness. Programming Jakarta Struts. O’Reilly, 2002.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns -
Elements od Resuable Object-Oriented Software. Addison Wesley, 1994.

[LM02] Jeff Levinger and Rita Moran. Oracle Label Security Administrator’s Guide Release 2.
Oracle, 2002.

36

